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SUMMARY

Vesicular nucleo-cytoplasmic transport is becoming
recognized as a general cellular mechanism for
translocation of large cargoes across the nuclear en-
velope. Cargo is recruited, enveloped at the inner nu-
clear membrane (INM), and delivered by membrane
fusion at the outer nuclear membrane. To understand
the structural underpinning for this trafficking, we
investigated nuclear egress of progeny herpesvirus
capsids where capsid envelopment is mediated by
two viral proteins, forming the nuclear egress com-
plex (NEC). Using a multi-modal imaging approach,
we visualized the NEC in situ forming coated vesicles
of defined size. Cellular electron cryo-tomography
revealed a protein layer showing two distinct hexag-
onal lattices at its membrane-proximal and mem-
brane-distant faces, respectively. NEC coat architec-
ture was determined by combining this information
with integrative modeling using small-angle X-ray
scattering data. The molecular arrangement of the
NEC establishes the basic mechanism for budding
and scission of tailored vesicles at the INM.

INTRODUCTION

Intracytoplasmic transport between compartments is primarily

mediated by vesicles (Schekman andOrci, 1996). These vesicles

are shaped by specific coat proteins that are recruited to the site

of assembly and function to deform the membrane (McMahon
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and Gallop, 2005). In contrast, movement into and out of the

nucleus is effected by ‘‘gated transport’’ via the nuclear pore

complexes (NPCs). NPCs allow free diffusion of small molecules

and canmediate active transport of cargo up to�39 nm in diam-

eter (Panté and Kann, 2002). Larger macromolecular assem-

blies, however, are unable to pass through the NPC. Recently,

vesicular trafficking was reported to mediate nucleo-cyto-

plasmic transport of ribonucleoprotein particles (Speese et al.,

2012). This non-canonical pathway across the nuclear double

membrane involves vesicle formation at the INM and fusion at

the outer nuclear membrane (ONM). Another suggested role of

this pathway is in nuclear recycling, i.e., transport of nuclear pro-

tein aggregates like defective NPC assembly intermediates to

the cytosolic autophagy machinery for degradation (Rose and

Schlieker, 2012; Webster et al., 2014).

The ribonucleoprotein particle transport mechanism is in

many respects similar to nuclear egress of herpesviruses

discovered a decade earlier (Mettenleiter et al., 2013). In the

latter, �125-nm-diameter icosahedral herpesvirus capsids

assemble inside the nucleus and use vesicle-mediated trans-

port across the nuclear envelope to gain access to the cyto-

plasm for further maturation. The combined evidence from

the cellular ribonucleoprotein particle and viral capsid transport

systems makes it likely that vesicle transport represents a

general mechanism for translocation of large cargo from the

nucleus to the cytoplasm that herpesviruses have usurped

during evolution. Whereas the overall topology of the process

of herpesvirus nuclear egress resembles cellular vesicle traf-

ficking, little is known about the nanostructural details that

lead to formation, scission, and fusion of INM-derived vesicles.

Studied already in great biological detail, herpesvirus nuclear

egress therefore represents a unique tractable model system
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Figure 1. The NEC in the Replication Cycle

of Herpesvirus

(A) Schematic of the stages of vesicle-mediated

herpesvirus capsid nuclear egress, consisting of (i)

primary envelopment by the NEC (green) at the INM

and (ii) fusion of the vesicle with the ONM, resulting

in de-envelopment to release the capsid into the

cytoplasm.

(B–F) Developmental stages of the NEC coat in

HSV-1-infected Vero cells (moi: 10, 16 hr p.i.)

analyzed by electron cryo-microscopy of vitreous

sections (CEMOVIS). (B) Projection image taken

after pre-irradiation; nominal section feed: 30 nm;

compression: 47%, corrected. (B0) Magnification of

the yellow box marked in (B) (arrows: NEC coat).

(C–E) Slices of tomographic reconstructions (C and

D: nominal section feed, 100 nm; compression,

13%, 3D-corrected; E: nominal section feed,

50 nm; compression, 26%, 3D-corrected; asterisk,

ILV; Movies S1 and S2). (F) Projection image taken

after pre-irradiation; nominal section feed, 30 nm;

compression, 47%, corrected. Scale bar, 200 nm

(B and F) and 100 nm (B0–E). cyt, cytoplasm; INM,

inner nuclear membrane; NP, nuclear pore; nuc,

nucleus; ONM, outer nuclear membrane.
to delineate the general structural and functional basis of nu-

cleo-cytoplasmic vesicle transport.

Studies of herpesvirus nuclear egress showed that, during

infection, newly formed intranuclear capsids bud at the INM

(Figure 1A) followed by membrane scission, resulting in envel-

oped capsids located in the perinuclear space. The envelope

then fuses with the ONM to deliver the capsids to the cytoplasm.

A large body of experimental studies has established that,

throughout the Herpesviridae, two viral proteins, designated as

pUL31 and pUL34 in the alphaherpesviruses herpes simplex

virus 1 (HSV-1) and pseudorabies virus (PrV), form the heterodi-

meric nuclear egress complex (NEC; Figure 1A, green). The NEC

is required and sufficient for vesicle formation, i.e., budding and

scission, at the INM (Klupp et al., 2007; Mettenleiter et al., 2013).

The C terminus of the type II membrane protein pUL34 tethers

the NEC to the INM, while pUL31 is exposed to the nucleoplasm.

pUL31 then associates with the capsid surface in the lumen of

the nascent perinuclear vesicle. After vesicle fusion with the

ONM and release of the capsid, the NEC is exposed to the cyto-

plasm (Mettenleiter et al., 2013). NEC components are also likely

to mediate cargo selection (Funk et al., 2015). Additionally, ki-

nases recruited to the NEC are responsible for phosphorylation

of lamins for local dissolution of the nuclear lamina to allow ac-

cess of capsids to the INM (Hatch and Hetzer, 2014; Mettenleiter

et al., 2013) and for phosphorylation of NEC components (Mou

et al., 2009; Sharma et al., 2015). Whereas this prototypic

budding process at the INM and its components are well charac-

terized, the fusion process with the ONM is still under debate,

including a possible role of viral fusogenic glycoproteins (Met-

tenleiter et al., 2013).

Recently, in vitro studies showed that partially truncated NEC

components artificially membrane tethered to giant unilamellar

vesicles formed a coat that can function as a minimal virus-

encoded vesiculation machinery, not requiring additional viral

or cellular factors (Bigalke et al., 2014). Furthermore, artificial
C

membrane tethering of pUL31 alone was sufficient for induction

of membrane invaginations and membrane scission in giant uni-

lamellar vesicles (Lorenz et al., 2015). However, owing in part to

the reduced complexity of the models used, these studies did

not provide sufficient ultrastructural detail to elucidate the archi-

tecture and functionality of the NEC coat. Thus, we here investi-

gated the NEC in its native location, in vesicles at the periphery of

the nucleus.

The size of the nucleus makes it a challenging target for

visualization of intra-nuclear structures at molecular resolution

in situ. Nevertheless, by applying an integrated multi-modal

approach that enabled near-native imaging over variable scales

and resolutions (Zeev-Ben-Mordehai et al., 2014), we were able

to characterize in detail both the extent of nuclear membrane

remodeling and the architecture of the NEC at the INM. We first

show in cryo-sections of herpesvirus-infected cells that the NEC

forms a protein coat that lines capsid-containing perinuclear

vesicles during egress. We then characterize the ultrastructure

of NEC-coated vesicles in non-infected cells that co-express

pUL31 and pUL34. Further, that latter experimental system

provided a higher frequency of these vesicles, allowing suc-

cessful cellular electron cryo-tomography of lamellae prepared

by advanced focused ion beam cryo-milling (cryoFIB). Subse-

quent three-dimensional averaging of the NEC coat revealed

that it forms an ordered lattice with two different hexameric

faces. X-ray scattering data of solubilized NEC complexes,

combined with integrated modeling, allowed us to determine

that these two faces represent pUL34 anchored in the vesicle

membrane and pUL31 forming the inner layer. The unique

structure and interactions between the two protein layers

result in a defined membrane curvature, ensuring that viral cap-

sids are tightly enveloped. Our data reveal how formation

of correctly sized perinuclear vesicles is achieved and establish

a mechanistic basis for nucleo-cytoplasmic transport of large

cargoes.
ell 163, 1692–1701, December 17, 2015 ª2015 The Authors 1693



Figure 2. Nuclear Ultrastructure in PrV

pUL31/pUL34-GFP Co-Expressing Cells

(A)Slices througha3Dvolumeofaporcineepithelial-

like embryonic kidney cell determined by live-cell

3D-SIMat37�C (�120nm lateral resolution). The cell

nucleus, as well as features of the nuclear envelope

(arrow, tubular invagination; asterisks, vesicle clus-

ters or ‘‘speckles’’), are highlighted by stably co-

expressing PrV pUL31 and pUL34, the latter fused to

GFP.ThicknessofXZandYZprojections is indicated

by dashed lines in the XY projection (for 3D volume,

see Movie S3). Scale bar, 5 mm.

(B)AsliceofaCEMOVIS tomographic reconstruction

of the nuclear periphery of a proteinase-K-detached

BK cell cryo-immobilized after 2 days standard

cultivation (nominal section feed, 100 nm; compres-

sion, 13%, 3D-corrected) depicts the typical size

range of ILVs in an invagination of the INM (arrow,

‘‘stalk’’ region; asterisks, membrane crevasses).

Scale bar, 200 nm. cyt, cytoplasm; nuc, nucleus.
RESULTS AND DISCUSSION

In Situ Structural Characterization of NEC-Mediated
Capsid Envelopment at the INM by CEMOVIS
To analyze the NEC coat formed in situ during viral infection in its

most native environment, we used electron cryo-microscopy

and tomography (cryoEM/T) (Hoenger, 2014). CryoET imaging

of areas deeper inside cells typically requires vitreous sections

in order to provide electron transparent specimens of <500 nm

thickness (Luci�c et al., 2005). In electron cryo-microscopy of vit-

reous sections (CEMOVIS), a method for imaging hydrated and

unstained cellular ultrastructural detail (Dubochet, 2012), NECs

were observed as electron-dense coats at the nucleoplasmic

side of the INM and in the perinuclear space of HSV-1-infected

Vero cells (Figures 1B–1F and Movies S1 and S2). When nuclear

capsids were in close contact to the INM, a planar NEC coat of

�100 nm diameter, i.e., about the width of the capsid, was

observed (Figure 1B0, right HSV-1 capsid). The coat curved

and expanded during budding of the INM into the perinuclear

space (Figure 1B0, left HSV-1 capsid). Interestingly, the elec-

tron-dense NEC coat did not extend beyond the individual sites

of budding (Figures 1C and 1D and Movie S1). Ultimately, the

NEC formed a tightly fitting complete coat around the capsid

(Figures 1D–1F and Movies S1 and S2). In HSV-1-infected

Vero cells, not only DNA-filled C-capsids underwent primary

envelopment (Figures 1B, 1D, and 1F), but also empty A-capsids

(Figure 1C) and scaffold-containing immature B-capsids (Fig-

ure 1E, right vesicle). Intraluminal vesicles (ILVs, defined as pos-

sessing the NEC coat but lacking capsids; Figure 1E, asterisk;

Movie S2) represented 34% of all observed perinuclear vesicles

in HSV-1-infected Vero cells (14 of 41 vesicles, from 21 tomo-

grams total), with a mean inner diameter of 115 nm ± 11 nm

SD (n = 12). During de-envelopment, the NEC coat was left

behind at the cytoplasmic face of the outer nuclear membrane

(Figure 1F, arrow), and cytoplasmic capsids, now devoid of the

NEC coat, subsequently underwent virion assembly (Figure 1F,

right, and Movie S2, right upper-corner). This result contradicts

previous conclusions drawn on the basis of interpreting densities

in heavy-metal-stained, freeze-substituted, plastic-embedded
1694 Cell 163, 1692–1701, December 17, 2015 ª2015 The Authors
samples (Wild et al., 2015) and is in line with the absence of

pUL31 and pUL34 in extracellular HSV-1 virions (Loret et al.,

2008).

A grainy nature of the NEC coat was readily visible in compu-

tational slices through cryoET reconstructions (Figures 1C–1E

and Movies S1 and S2), suggesting a modular lattice-type archi-

tecture consisting of repetitive units. To analyze the structure

and function of this coat in greater detail, a multimodal imaging

approach was needed, spanning several length scales and

covering from the nuclear distribution of its fully assembled

form down to interactions of its single constituents.

Nuclear Ultrastructure in an In Situ Cell Model for
Elucidating the NEC Architecture
In HSV-1-infected cells, the number of capsid envelopment

events captured at the INM was low. Therefore, we used a pre-

viously described porcine cell line that stably co-expresses

pUL31 and pUL34 of PrV as a model frequently showing NEC-

mediated vesicle formation (Klupp et al., 2007). In this BK cell

line, pUL34 is anchored to the INM by its authentic C-terminal

transmembrane region, with the C-terminal GFP tag exposed

on the vesicle outside, i.e., on the opposite membrane side

of the NEC. Tagging allowed visualization of the NEC in vivo.

By using three-dimensional structured illumination microscopy

(3D-SIM) (Schermelleh et al., 2010), volumetric live-cell imaging

of the nucleus at sub-diffraction resolution was achieved. This

revealed clusters of fluorescent speckles of �160–1,500 nm

diameter at multiple sites around the nuclear periphery, as well

as within the nuclear interior along membranous invaginations

(Figures 2A and Movie S3). These clusters represent accumula-

tions of NEC-containing vesicles in the perinuclear space (Klupp

et al., 2007) andwere intensely fluorescent, suggesting high local

concentrations of pUL34-GFP.

Imaging of similar regions of BK cells at higher resolution by

soft X-ray cryo-microscopy/tomography, guided by correlation

with GFP fluorescence (Hagen et al., 2012), provided detailed in-

formation about the spatial distribution of the NEC-containing

target structures/vesicle clusters throughout the nucleus (Fig-

ure S1 and Movies S4 and S5). The ultrastructure of these



Figure 3. Ultrastructural Characterization of

a Cluster of ILVs by CryoFIB/ET

(A–C) Slices through an electron cryo-tomogram of

a lamella prepared by cryoFIB, interpreted sche-

matically in (C). Vesicles not shown in the experi-

mental map slices are depicted semi-transparently

(Movie S6). ILVs are tightly surrounded by the INM

(black arrows) and are closely related in size, ex-

hibiting diffuse contents. The NEC coat (green)

appears to nearly cover the entire inner surface of

the vesicle membrane (white arrows). A fuzzy layer

of density attributed, at least partly, to the C-ter-

minal GFP of the type II transmembrane protein

construct pUL34-GFP, surrounds each vesicle and

projects into the intraluminal/perinuclear space

(ILS). Inspection of tangential slices (example:

black star) suggests that imperfections in the lattice

arrangement of the NEC coat do occur but that

these likely represent only a small fraction of the

total vesicle surface area. Red asterisks highlight a

near spherical vesicle from which measurements

of NEC coat parameters were taken. Scale bar,

100 nm. nuc, nucleus.

(D) Boxplot of the distribution of vesicle sizes

(vesicle inner diameter: dashed line in inset vesicle)

measured in 3D from BK cells prepared for tomo-

graphic electron imaging by CEMOVIS (red) and

cryoFIB (blue). The distributions share a median of

�100 nm. VM, vesicle membrane.
intranuclear vesicle clusters was next characterized in 3D by

CEMOVIS (Figure 2B), resulting in visualization of vesicles with

a grainy inner NEC coat and a mean inner diameter of 107 ±

33 nm SD (n = 79). These vesicles were closely similar in size

and structure to the capsid-less ILVs in infected cells (Figure 1E,

asterisk).

Characterization of larger volumes by serial CEMOVIS sec-

tions enabled us to localize and characterize the occurrence

of repetitive NEC structures/lattices suited for sub-tomogram

averaging, even in rare developmental states (Figure 1). An alter-

native cryo-thinning technique, cryoFIB, has recently been

developed to produce 100–300 nm thick lamellae from vitreous

samples. This approach does not rely on physical cutting and,

thereby, avoids sectioning artifacts (Marko et al., 2007; Rigort

et al., 2012). CryoET data were recorded from cryoFIB-prepared

lamellae of plunge-frozen BK cells. Perinuclear vesicles were

typically spherical, although some exhibited a more irregular
Cell 163, 1692–1701, De
shape (Figures 3A–3C and Movie S6),

possibly due to crowding. The NEC pro-

tein layer was evident as a clear lattice-

like, �10-nm-thick coat lining the entire

inside of each vesicle with periodic con-

nections to the vesicle membrane (Figures

3A and 3B). Size measurements of vesi-

cles from three tomograms showed a

peaked distribution with a mean inner

diameter of 103 ± 10 nm SD (n = 31) (Fig-

ure 3D). The thickness of the coat and the

size of ILVs in BK cells measured in 3D

from CEMOVIS and cryoFIB-based data
were in agreement (Figures 2B and 3 and Movie S6) and were

similar to CEMOVIS data from HSV-1-infected Vero cells

(Figure 1E). The vesicle diameters did not show a Gaussian dis-

tribution. Instead, the distribution is heavily skewed and peaked

with very light tails (Figure 3D). These properties suggest that a

specificmechanism inherent to NEC coat assembly is a predom-

inant determinant of vesicle size, with positive skewness indi-

cating a lower limit of the measured parameter.

Ultrastructure of the NEC Coat Lattice Revealed by
Sub-Tomogram Averaging
The previous observations suggested a highly repetitive or-

ganization of the NEC protein layer. Taking different curvature

into account, the structure of the NEC coat was therefore

determined independently for each vesicle by sub-tomogram

averaging from the cryoFIB/ET data (Figure 4). Each vesicle

average revealed a curved hexagonal lattice composed of two
cember 17, 2015 ª2015 The Authors 1695



Figure 4. Sub-tomogram Averaging of the NEC Coat

(A) Sub-tomogram average (�3.5 nm resolution, Figure S2) viewed in char-

acteristic ‘‘6-2-6’’ and ‘‘3-2-3’’ cross-section, oriented such that the slice

passes through a 2-fold axis and intercepts adjacent 6-fold (Movie S7) or

3-fold axes, respectively. Scale bar, 10 nm. VM, vesicle membrane.

(B) Tangential slices through membrane proximal (MP) and membrane-distal

(MD) layers (Movie S8). Each layer corresponds to p6 symmetry with lattice

spacing of �11 nm. However, the MP layer exhibits a distinct arrangement of

density that, at the available resolution, appears to correspond to a p6 lattice

with a spacing of �6 nm and offset from the MD lattice by 30�. Scale bar,

10 nm.

(C) Surface views rendered from the vesicle exterior and the vesicle interior

show characteristic features of theMP andMD layers, respectively (Movie S9).

Symbols indicate symmetry axes (6-fold, 3-fold, and 2-fold).

Figure 5. Interpretation of the NEC Coat Based on the Sub-tomo-

gram Average

The initial architectural model of the NEC coat (lower-right) made from

hexameric interactions of pUL31/34 heterodimers (hexameric unit cell; upper-

middle) is shown alongside characteristic cross-sectional views of the NEC

coat average (‘‘6-2-6’’ and ‘‘3-2-3’’ views shown in Figure 4A and ‘‘6-2-6’’ in

Movie S7). An arch keystone is marked with a white asterisk. pUL34 (magenta)

and pUL31 (purple) make up the MP and MD layers, respectively.
tightly interconnected layers of distinct appearance (Figures 4A,

4B, and S2 and Movies S7 and S8 [resolution 3.5–4 nm]). We

termed the two NEC layers the membrane-proximal (MP) and

membrane-distal (MD) layers. The MD layer is a �3-nm-thick

hexagonal lattice with a spacing between repeating unit centers

of �11.5 nm (purple), and the MP layer is �7 nm thick (magenta)

(Figure 4C andMovie S9). In cross-sections, the repeating unit of

the NEC coat (a single hexagon) shared a characteristic

‘‘archway’’ motif—similar to an inverted ‘U’ (Figure 4A andMovie

S7). The hexagonal unit could be further decomposed into amotif

of angular appearance, one side of the archway, which appeared
1696 Cell 163, 1692–1701, December 17, 2015 ª2015 The Authors
kinked at approximately two-thirds along its length. Thus, theMP

layer consists of a conical arrangement of six independent

densities that originate at the unit cell ‘‘keystone’’ extending to-

ward the vesicle center to form an ‘‘arch’’ and connecting with

the MD layer near the 2-fold axes. Densities connecting the

arch/keystone of the unit cell to the vesicle membrane were

already apparent in raw tomograms (Figure 3 and Movie S6)

and became accentuated after sub-tomogram averaging (Fig-

ure 4A and Movie S7).

We assigned the MP layer to the membrane-anchored pUL34

and the MD layer to pUL31 (Figure 4C and Movie S9). The sche-

matic interpretation shown in Figure 5 is based on analysis of

tangential slices revealing the characteristic arrangements of

protein density in each layer (Figure 4B and Movie S8). Orthog-

onal cross-section slices, shownadjacent to themodel (Figure 5),

reveal that the local curvature of the MD layer (pUL31) is not

isotropic. Between 3-fold axes (‘‘3-2-3’’) theMD layer is distinctly

planar, whereas between 6-fold axes (‘‘6-2-6’’), the curvature of

MD is consistent with that of the vesicle membrane.

Integrative Modeling of the NEC Lattice Structure Using
a Small-Angle X-Ray Scattering Envelope for the Soluble
pUL31/34 Heterodimer
The cryoFIB/ET sub-tomogram averages do not readily reveal

the stoichiometry of pUL31/34 heterodimers in the NEC coat.

The schematic interpretation shown in Figure 5 suggests that



Figure 6. Stoichiometry of the pUL31/34 Heterodimer within the NEC

Coat, Based on SAXS Data

(A–F) (A) SAXS scattering curve for soluble PrVNEC (red circles; Figure S3) with

the fit of the theoretical scattering curve calculated from the ab initio model

(green line) and the respective size distribution (inset). (B) The ab initio

heterodimeric model derived from the simulated annealing bead modeling of

the 1D-SAXS curve. (C) Surface views of the SAXS-based hexameric model

([pUL31/34]6) accounting best for the cryoEM-derived density. One hexamer is

rotated to show four views from different directions. (D–F) Four copies of

[pUL31/34]6 fitted into the cryoEM map (transparent gray surface, compare

Movie S10) are shown in both cross sections (D and E) as well as semi-

transparent surface view from the vesicle exterior (F). Note the missing density

at the center of each hexamer (the arch keystone, instances marked with a

black asterisk in D and E), as the model is based on a SAXS model of a het-

erodimer with truncated pUL34 (Figure S3B).

C

the unit cell is composed of a hexamer of heterodimers ([pUL31/

34]6). To independently validate the model, we characterized a

soluble form of the PrV pUL31/34 heterodimer (Figure S3) by

small-angle X-ray scattering (SAXS) (Figure 6). We determined

the shape of the soluble heterodimer by ab initio modeling

from the 1D SAXS scattering curve (Figures 6A and 6B) (Franke

and Svergun, 2009). The angular shape (87 nm3 in volume, radius

of gyration of 2.96 nm, and maximum dimension of 10.2 nm) was

similar to that observed in the cryoEM sub-tomogram average as

one side of the archway. To orient the soluble heterodimers

within the cryoEM map, we carried out a fitting search using

the SAXS model and sampled the full rotational range. By locally

fitting multiple copies of the highest-scoring model into the

cryoEM map, we were able to account for the cryoEM density

as well as to reproduce its characteristic features (Figures

6C–6I and Movie S10). Together, this integrated modeling sug-

gests that the NEC coat is composed of a �10-nm-thick layer

of interacting hexameric cores of NEC heterodimers in lateral

self-association.

The densities of the MP layer leading to the membrane are not

accounted for by theSAXSmodel (Figures 6Dand6E), consistent

with it being the truncated sequence frompUL34 that leads to the

transmembrane domain (residues 180–240). The calculated

mass from these residues (�40 kDaper hexamer) and the volume

of the unaccounted density are congruent, confirming that the

NEC coat consists only of pUL31 and pUL34, without direct

contribution from any other viral or cellular factors, as was shown

in vitro for HSV-1 (Bigalke et al., 2014). Previously, it has been

reported that this membrane-connecting part of pUL34 contain-

ing low-complexity/high-flexibility domains (Figure S3C) can be

deleted and substituted by heterologous transmembrane-con-

taining peptides (Paßvogel et al., 2014).

The NEC Structure Inherently Defines a Vesicle Size to
Tightly Accommodate Viral Capsids
To unveil the architectural basis for its constrained curvature, we

devised a simplified mathematical description of the NEC coat

(Figure 7) and used this to produce a model of the coat that

closely matches the measurements from the cryoFIB/ET

average (Figure S4). The results confirm that the interplay of

interactions within each layer and repeated heteromeric interac-

tions between pUL31 and pUL34 define the curvature of the NEC

coat.

Observation of a hexagonal NEC coat for the two alphaher-

pesviruses, PrV, as reported here, and HSV-1 (Bigalke et al.,
(G–I) The EM map of the NEC coat with four fitted hexameric SAXS-based

models of soluble heterodimeric NEC is viewed from the side and sliced to

remove density up to the ‘‘6-2-6’’ section passing through the map’s center

(G; for full hexamers, see Movie S10). The SAXS-derived model accounts for

the EM density archways in all regions except the arch itself, thereby serving to

validate the stoichiometry of our initial architectural model based on prediction

of protein occupied volume. Tangential slices through the map at radii corre-

sponding to MP (H) and MD (I) layers show that the ‘‘fitting search’’ using the

SAXS-derived shape model is able to reproduce the characteristic features of

the NEC coat (i.e., the two-layered arrangement) but also suggest that

interactions between heterodimers occur predominantly across the 2-fold

axis within both MD and MP layers, associated with pUL31, and pUL34,

respectively.
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Figure 7. Architectural Basis for Con-

strained Curvature Formation

(A) A schematic model of the NEC where charac-

teristic layers are represented as they appear in

tangential slices (Figure 4B and Movie S8). Align-

ment of pink and purple points will result in for-

mation of curvature essentially defined by the radial

separation of each layer (parameter ‘‘h’’).

(B) A ‘‘6-2-6’’ cross-section view of the NEC coat

average is modeled according to parameters

(h, VMD, and VMP; compare Equation 1 in the Sup-

plemental Experimental Procedures) measured

from the experimental average. Magenta (MP) and

purple (MD) circles highlight that hexagonal layers

of characteristic repeat distances (VMD and VMP)

interact via the pUL31/34 heterodimer interface to

induce a defined curvature. The basis for determi-

nation of the exact radial position of the two layers

is given in Figure S4, and an arch keystone is

marked with a white asterisk.

(C) The NEC coat diameter between opposite MD

layers (dMD) is plotted as a function of a (the arc

quotient), and experimentally determined vesicle

sizes from cryoFIB-prepared samples are shown

as colored circles. The vesicle modeled in (B) is

represented in red (see also red asterisk in Figures

3A–3C), while the mean vesicle size is indicated in

green and a coated capsid by the respective

symbol in gray, each with their respective a values.

These values are plotted assuming that VMD is

constant, while VMP is hypothesized to vary, owing

to flexibility within coat.

(D) The resulting model in the context of an entire

vesicle cross-section produced by extrapolation

as described in the Supplemental Experimental

Procedures. pUL34 (magenta) and pUL31 (purple)

make up the MP and MD layers, respectively.
2014), suggests that interactions occurring at 2-fold and 3-fold

axes of the MD (pUL31) layer are likely evolutionarily conserved

(lattice spacing �11 nm in both cases). Interestingly, artificially

membrane-tethered pUL31 oligomers, i.e., in the absence of

the native membrane tether pUL34, did not show any regular/

hexagonal pattern (Lorenz et al., 2015). Thus, by mutually

confining the position of each of the six NEC heterodimers in

space, the role of the pUL34 membrane-connecting region is

critically central in determining structural properties of the MP

layer and thereby the curvature of the NEC coat. However, the

distribution of vesicle sizes suggests that the NEC coat does

not function as two rigidly imposed layers, i.e., it is not crystalline.

While constrained in space by arch-forming interactions, the

range of curvatures, vesicle sizes, and shapes observed (Figures

3D and 7C), starting from a planar NEC coat at initial budding

sites (Figure 1B), is mediated by a high degree of flexibility in

the membrane-connecting region of the coat.

In our experiments, we confirmed that, at artificially high local

concentrations, in cells under constitutive expression (or in incu-

bated vesicles), NECs alone can spontaneously form a coat and

are able to mediate a complex process that involves induction of

membrane curvature, vesicle budding, and scission. However,

our observations at concentrations typical of the native situation,

i.e., in infected cells, suggest that, in two-thirds of the perinuclear

vesicles, the initial nucleation of pUL31/34 heterodimers to form
1698 Cell 163, 1692–1701, December 17, 2015 ª2015 The Authors
the NEC coat depended on presence of the capsid cargo

(Figure 1).

In the cellular context, the NEC coat has the ability to form uni-

formly sized coated vesicles independent of the capsid cargo

(ILVs in HSV-1-infected cells, Figures 1E and 3) (Klupp et al.,

2007). A higher variability in curvature and hence size and shape

has been observed in artificial model vesicles using partially trun-

cated pUL31/34 constructs without the genuine membrane

anchor (Bigalke et al., 2014; Lorenz et al., 2015). The heteromeric

combination of both pUL31 and pUL34 and their arrangement as

hexamers as a result of the arch-forming interactions yield a

structural environment (i.e., the inner surface of the coat)

conceivably central to the task of selectively and efficiently re-

cruiting and transporting the viral capsid. Thus, we propose

that, while membrane-anchored pUL31 is able to drive budding

on its own (Lorenz et al., 2015), formation of vesicles of a cur-

vature tailored specifically to the herpesviral capsid requires

pUL34.

Finally, we found that NEC coat assembly in situ produces

vesicles of a size closely approximating but being somewhat

smaller than capsids (Figures 3D and 7C). This size distribution

in the absence of the capsid cargo suggests that it is most likely

the capsid itself that determines the minimum diameter of an en-

veloped capsid (Figure 7C, gray capsid symbol), as the NEC coat

appears to inherently favor a slightly higher curvature and thus



smaller vesicle size. Concomitantly, this ensures a very tight fit

and interaction between the NEC coat and the capsid, leading

to a cargo vesicle of the smallest possible size given the compo-

nents involved.

Our current functional model of capsid envelopment at the

INM can be summarized as follows: sparsely distributed NEC

heterodimers form a planar layer at the INM, either spontane-

ously or initiated by cargo/capsid docking. At this point, the lat-

tice already shows the �11 nm spacing of the hexagonal MD/

pUL31 layer (Bigalke et al., 2014). Driven potentially by structural

changes in the pUL34 region during the concomitant formation of

a second hexagonal layer (MP), budding of the INM into the peri-

nuclear space is induced. New NEC heterodimers are recruited

at the rim of the coat until it reaches its curvature limit through

interaction of the MD/MP layers at a size to precisely envelope

a herpesviral capsid.

Our insights into the molecular mechanism of remodeling the

nuclear envelope for viral nuclear egress provide a molecular

template by which nucleo-cytoplasmic transport can occur.

The precise architecture of the NEC defines vesicles with a spe-

cific size, allowing an efficient but highly controlled method of

egress. This mechanism allows the transport of cargoes with

minimal disruption to the INM, a feature essential for the egress

of equivalent cellular cargoes. Crucially, membrane-anchored

proteins mediating a divergent process would pre-assemble

with a potentially modular cargo-recruitment adaptor to form

heterodimeric units capable of forming lateral, self-assembling

lattices. Formation of curvature by this lattice is then a pre-requi-

site for envelopment of egressing cargoes, features that would

be evident when investigated in vitro. High-resolution structures

of NEC from different herpesvirus species have now emerged

that may reveal a common structural homology to cargo recruit-

ment at the INM (Bigalke and Heldwein, 2015; Leigh et al., 2015;

Lye et al., 2015; Walzer et al., 2015). Interestingly, pUL31 con-

tains a conserved zinc-finger motif essential for vesicle formation

and NEC function (Zeev-Ben-Mordehai et al., 2015). Using the

curved lattice structure described here as a model for fitting

the atomic structure of the NEC heterodimer (Zeev-Ben-Morde-

hai et al., 2015), we have defined exact interaction surfaces that

could be used as a further constraint for structural and functional

homology modeling of putative cellular counterparts.

Recently, it has been shown that TorsinA AAA+ ATPase is acti-

vated in a complex with type II membrane protein LAP1 at the

INM (Brown et al., 2014; Sosa et al., 2014). As speculated in

McCullough and Sundquist (2014), that complex might also be

involved in perinuclear vesicle formation during transport of ribo-

nucleoprotein particles in Drosophila cells in which TorsinA has

been shown to promote INM scission (Jokhi et al., 2013). This

complex and the NEC might share molecular attributes like the

zinc-finger motif coming from a common ancestor when (and

if) herpesvirus has hijacked this pathway in evolution (Forterre

and Prangishvili, 2013). However, there aremany issues in deter-

mining common ancestors for protein structures, including the

increased mutation rate of viral genomes (Abroi and Gough,

2011). A next practical step to analyze that further might be to

apply cryoEM also in vesicle-accumulating TorsinA-mutated

cells described in Jokhi et al. (2013). This imaging technique

is the sole method that can elucidate the direct presence of a
C

(protein) coat along a membrane unequivocally as it avoids arti-

facts by chemical fixation and heavy metal staining and can be

combined with immunostaining (Karreman et al., 2011). Finding

a coat of TorsinA-LAP1 complexes, or any other players impli-

cated in nuclear egress, might then suggest a similar mechanism

of vesicle formation in a general nucleo-cytoplasmic transport

pathway of large cargo, as described here for nuclear egress

of herpesviral capsids.

Concluding Remarks
The described NEC coat architecture is an elegant solution for

induction of membrane curvature based solely on the formation

of a highly defined lattice of heterodimer interactions. This is

reminiscent of virus budding at the plasma membrane, e.g.,

HIV (Sundquist and Kräusslich, 2012). However, the NEC targets

the INM, amembrane for which no other vesicle transport has yet

beenmechanistically fully elucidated (Jokhi et al., 2013). Further-

more, while most cellular vesicle formation processes involve a

dedicated cellular scission machinery and consume energy in

form of ATP or similar, the NEC (1) appears capable of autoscis-

sion by continuing assembly of NEC units on the inside of the

forming vesicle (Bigalke et al., 2014) and (2) requires at least

under in vitro conditions no external energy input for both mem-

brane budding and scission (Lorenz et al., 2015). Elucidating

the unique features of the binary pUL31/34 vesicle formation

machinery might provide the blueprint for designing vesicles of

highly defined sizes or specific volumes to be used in pharma-

ceutical and nanobiotechnological applications. Moreover, the

characterization of the nature of the viral cargo packing system

at the INM opens the search for the respective cellular counter-

parts and molecular determinants mediating nuclear egress of

cellular large cargo, including ribonucleoprotein particles (Hatch

and Hetzer, 2014; Jokhi et al., 2013).

EXPERIMENTAL PROCEDURES

Cryo-Electron Microscopy of Vitreous Sections

Sixteen hours after infectionwith herpes simplex virus 1 (HSV-1) strain K26GFP

(Desai and Person, 1998) at a multiplicity of infection of 10, trypsinized African

green monkey kidney cells (Vero cells, strain CCL-81; ATCC) or proteinase

K-treated porcine epithelial-like embryonic EFN-R kidney cells stably co-ex-

pressing PrV pUL31 and pUL34, the latter fused with GFP (cell line designated

as BK/EFN/UL31/34 gfp, here abbreviated to BK, catalog No. RIE 1083 of the

Collection of Cell Lines in Veterinary Medicine at the FLI, Greifswald-Insel

Riems, Germany) (Hagen et al., 2012; Klupp et al., 2007), were physically fixed

and analyzed. Cryo-immobilization was performed by high-pressure freezing

followed by cryo-electron microscopy of vitreous sections (CEMOVIS), essen-

tially as described in Hagen andGrünewald (2008). Further details are available

in the Supplemental Experimental Procedures.

Live-Cell Three-Dimensional Structured Illumination Microscopy

BK cells were grown on high-precision 223 22 mm No. 1.5H glass coverslips

(Marienfeld Superior) or in m-Dish, high glass bottom 35-mm dishes (Ibidi

GmbH, Martinsried, Germany) to a confluency of �70%–80% in 10% (w/v)

fetal bovine serum in Dulbecco’s modified Eagle medium (DMEM; GIBCO-

Invitrogen). Before imaging, the medium was replaced with pre-warmed

Opti-MEM (GIBCO-Invitrogen). Three-dimensional structured illumination mi-

croscopy (3D-SIM) (Gustafsson et al., 2008) on live-cell samples was per-

formed using an OMX V3 Blaze system (Applied Precision, GE Healthcare)

(Strauss et al., 2012) equipped with a 603/1.42 NA PlanApo oil-immersion

objective (Olympus), a 488-nm diode laser with standard filter sets, and
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Edge sCMOS cameras (PCO). Further details are available in the Supplemental

Experimental Procedures.

CryoEM/T of Lamellae Produced by CryoFIB in a Dual-Beam

Scanning Electron FIB-SEM Cryo-Microscope

Standard 3.05 mm electron microscopy 200 mesh gold grids covered with a

perforated carbon foil (R2/1; Quantifoil Micro Tools GmbH, Jena, Germany)

were hydrophilised in a PDC-002 plasma cleaner (Harrick Plasma, Ithaca,

NY, USA). BK cells were grown on these grids in DMEM supplemented with

10% (w/v) fetal calf serum and 1% (v/v) PSNAntibiotic Mixture (GIBCO-Invitro-

gen), essentially as performed for 3D-SIM and soft X-ray microscopy samples.

After 2 days of incubation (37�C, 5% CO2) in plastic microscope slide growth

chambers (m-slide 23 9 well; Ibidi GmbH) and light microscopic screening for

optimal growth, cells were cryo-immobilized by plunge freezing, as described

in Hagen et al., 2012).

CryoFIB was essentially performed as recently described (Engel et al.,

2015). It is detailed in the Supplemental Experimental Procedures.

For tomography of the cryoFIB lamellae, a Tecnai G2 Polara transmission

electron microscope (FEI) equipped with a field emission gun operated at

300 kV, a GIF 2002 post-column energy filter (Gatan, Pleasanton, CA), and

a 20483 2048 Gatan Multiscan CCD camera were used. Tomographic tilt-se-

ries acquisition under low-dose conditions (10 tilt series out of 14 lamellae, tilt

range: �55� to 59�, cumulative dose: 110 electrons per Å2) was controlled by

SerialEM (Mastronarde, 2005). Tilt-series images were recorded at 3� tilt incre-
ments, with �6 mm defocus, at an object pixel size of 0.57 nm.

For alignment of the tilt-series projections, small spherical cellular features

or ice contaminants were employed as tracking markers, or patch tracking

following the routine in the Etomo GUI of IMOD was applied. Tomograms

were reconstructed using weighted back projections, and visualization was

performed with Amira 5.2 (FEI).

Sub-Tomogram Averaging and Modeling of CryoFIB/ET Data

Sub-tomogram averaging was carried out using the PEET package applying

constrained cross-correlation (CCC) (Briggs, 2013; Nicastro et al., 2006). De-

tails of data processing, integrated analysis, and model building are available

in the Supplemental Experimental Procedures.

Soluble NEC Preparation

Details on the construction of a soluble NEC expression vector are provided in

the Supplemental Experimental Procedures. Escherichia coli BL21 (DE3)

transformed with pETDuet::UL34(1–179)::UL31-NLS was grown to saturation

overnight at 25�C in LB medium containing ampicillin (100 mg ml�1). An aliquot

of overnight culture was diluted 1/20 in medium containing ampicillin and was

grown at 37�C to an OD600 of 0.6, at which time expression was induced by

addition of isopropyl-D- galactoside (IPTG) to a final concentration of 1 mM.

Cells were incubated for a further 4.5 hr at 25�C before being harvested by

centrifugation (3,500 3 g, 10 min, 4�C), and stored at �20�C.
Cells were re-suspended in buffer A (PBS pH 7.4); supplemented with 2,500

units DNase 1, 0.2mgml�1 lysozyme, 5mMMgSO4, and 1%protease inhibitor

cocktail (Sigma); and lysed by sonication. The supernatant was clarified by

centrifugation (45,000 3 g, 30 min, 4�C).
The complex was purified by metal affinity chromatography (co-sepharose

6-fast flow) followed by size-exclusion chromatography in buffer B (10 mM

Tris-HCl [pH 7.4], 75 mM NaCl, 3 mM DTT). Purified proteins were analyzed

by SDS-PAGE.

Small-Angle X-Ray Scattering Data Collection, Processing, and

Analysis

SAXS data for soluble NEC were collected on the BM29 beamline at the ESRF

synchrotron (Grenoble, France). Details are available in the Supplemental

Experimental Procedures.
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